This is a review text file submitted electronically to MR.

Reviewer: Konstantopoulos, Takis

Reviewer number: 68397

Address:

Department of Mathematics Uppsala University PO Box 480 SE-75106 Uppsala SWEDEN takis@math.uu.se,takiskonst@gmail.com

Author: Petrov, Leonid

Short title: Random strict partitions and determinantal point processes.

MR Number: 2651548

Primary classification: 60G55

Secondary classification(s): 20C25

Review text:

The topic of this short paper is the study of some probability measures on the "space of strict partitions"

$$\Lambda := \{\lambda = (\lambda_1, \dots, \lambda_N) : N, \lambda_1, \dots, \lambda_N \in \mathbb{N}, \ \lambda_1 > \dots > \lambda_N \}.$$

The first measure, denoted by Pl_{θ} is obtained from the Plancherel (probability) measure Pl_n on $\{\lambda \in \Lambda : |\lambda| := \sum_i \lambda_i = n\}$, by letting *n* be Poisson with parameter $\theta/2$, for some $\theta > 0$. The second measure, denoted by $M_{\nu,\xi}$, with $\nu = \frac{1}{2}\sqrt{1-4\alpha}, \alpha > 0, 0 < \xi < 1$, is obtained by a measure which has Radon-Nikodym derivative

$$\prod_{i} \prod_{j=1}^{\lambda_i} (j(j-1) + \alpha)$$

with respect to Pl_n , when *n* has a negative binomial distribution $\propto (\alpha/2)^n \xi^n/n!$, $n \in \mathbb{Z}_+$. Both measures are viewed as laws of point processes on Λ . It is shown that both point processes are determinantal in that their *k*-point correlation functions, $\rho_k(x_1, \ldots, x_k)$, where $x_1, \ldots, x_k \in \mathbb{N}$ are locations of particles, are given as determinants: $\rho(x_1, \ldots, x_k) = \det_{i,j=1}^k K(x_i, x_j)$. The kernels K(x, y)are identified explicitly in both cases.

When $M_{\nu,\xi}$ is viewed as a measure on the bigger space $\{0,1\}^{\mathbb{N}}$, the weak limit, as $\xi \to 1$, is shown to exist and is shown to be the law of a determinantal point process with explicitly computed correlation kernel.

Finally, a transformation of point processes on \mathbb{N} to point processes on \mathbb{R}_+ , defined by the embedding $\mathbb{N} \ni x \mapsto (1 - \xi)x \in \mathbb{R}_+$, is considered. The image

of $M_{\nu,\xi}$, under this transformation, is also shown to have a weak limit, which is also determinantal with correlation kernel explicitly computed in terms of the Whittaker functions, and also in terms of the Macdonald functions.